Nonlocal problems in perforated domains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Scale Convergence of Stekloff Eigenvalue Problems in Perforated Domains

By means of the two-scale convergence method, we investigate the asymptotic behavior of eigenvalues and eigenfunctions of Stekloff eigenvalue problems in perforated domains. We prove a concise and precise homogenization result including convergence of gradients of eigenfunctions which improves the understanding of the asymptotic behavior of eigenfunctions. It is also justified that the natural ...

متن کامل

A Monotonicity Approach to Nonlinear Dirichlet Problems in Perforated Domains

Abstract. We study the asymptotic behaviour of solutions to Dirichlet problems in perforated domains for nonlinear elliptic equations associated with monotone operators. The main difference with respect to the previous papers on this subject is that no uniformity is assumed in the monotonicity condition. Under a very general hypothesis on the holes of the domains, we construct a limit equation,...

متن کامل

Nonlocal problems at critical growth in contractible domains

We prove the existence of a positive solution for nonlocal problems involving the fractional Laplacian and a critical growth power nonlinearity when the equation is set in a suitable contractible domain.

متن کامل

The Periodic Unfolding Method in Perforated Domains

The periodic unfolding method was introduced in [4] by D. Cioranescu, A. Damlamian and G. Griso for the study of classical periodic homogenization. The main tools are the unfolding operator and a macro-micro decomposition of functions which allows to separate the macroscopic and microscopic scales. In this paper, we extend this method to the homogenization in domains with holes, introducing the...

متن کامل

The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains

In this contribution we analyze a generalization of the heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. The method was originally introduced by E and Engquist (Commun Math Sci 1(1):87–132, 2003) for homogenization problems in fixed domains. It is based on a standard finite element approach on the macroscale, where the stiffness matrix i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics

سال: 2019

ISSN: 0308-2105,1473-7124

DOI: 10.1017/prm.2018.130